As bases da Geometria Analítica
A base da geometria analítica está em representar os pontos de uma reta utilizando os números reais. Cada ponto de uma reta é representado por (ou representa) um único número real. Esse número real é obtido pela distância entre o referido ponto e a origem da reta, que é o ponto relacionado com o número zero.
O conceito de distância, portanto, é um dos mais importantes dentro da Geometria Analítica. Por meio dele são definidos outros conceitos importantes, como os de círculo e circunferência. Além disso, a maioria das definições algébricas de figuras geométricas é obtida por intermédio do conceito de distância.
Posteriormente, essa ideia foi expandida para a representação de pontos no plano, de modo que cada ponto do plano é representado por um único par de números reais conhecido como par ordenado. A imagem abaixo ilustra como o par ordenado (2,1) representa o ponto A.
Já os pontos do espaço são representados por um conjunto de três números reais, conhecidos como ternos ordenados. Cada terno ordenado representa apenas um único ponto no espaço.
Se um ponto pertence a uma reta e é representado por um número real, dizemos que o espaço onde esse ponto está localizado (a reta) possui apenas uma dimensão e o número real é chamado de coordenada do ponto.
Caso o ponto pertença a um plano, é representado por um par de números reais. O espaço onde está localizado (o plano) possui duas dimensões e esse ponto possui duas coordenadas.
Desse modo, o número de coordenadas que um ponto possui é igual ao número de dimensões que possui o espaço onde esse ponto está localizado. O ponto pertencente ao espaço tridimensional, por exemplo, possuirá três dimensões e será representado por três coordenadas. A figura acima retrata o ponto A, que pertence ao espaço tridimensional e é representado pelo terno ordenado (x,y,z).
Comentários
Postar um comentário